Int. J. Solids Structures, 1974, 10, pp. 361-381. Pergamon Press. Printed in Gt. Britain,

THE SUPPRESSION OF A DYNAMIC INSTABILITY OF
AN ELASTIC BODY USING FEEDBACK CONTROL

CHARLES F. KALMBACH

Research Staff, Department of Aerospace and Mechanical Sciences,
Princeton University, New Jersey 08540

EArRL H. DOWELL

Professor, Department of Aerospace and Mechanical Sciences,
Princeton University, New Jersey 08540

and

Francis C. MooN

Assistant Professor, Department of Aerospace and Mechanical Sciences,
Princeton University, New Jersey 08540

(Received 17 May 1973 ; revised 24 August 1973)

Abstract—A theoretical and experimental study is made to determine the feasibility of con-
trolling a thin cantilevered beam subject to a (nonconservative) follower force. A theoretical
model is developed using the equations for a thin beam under initial stress and Galerkin’s
method. An experiment is constructed with the capability of using a variety of feedback loops
to control a thin aluminum beam with a tip jet mounted parallel to the chord. A particular
control system is chosen for study and an increase of follower force required to destabilize the
beam of over 65 per cent is recorded. The theoretical results show good correlation with the
experimentally determined stability boundaries and frequency variations with follower force.
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M, coil mass

mp beam density

my tubing density

Q control force

Q follower force vector

q body force

r beam radius of gyration

r. perpendicular distance from elastic axis to control force

5 Laplace Transform Variable
T follower moment vector
t time
u bending displacement
U, bending natural mode
Ve tip force
V. feedback loop transfer function
\'% shear force vector
X, ),z coordinate system of undeformed beam
x, ¥,z coordinate system of deformed beam
Ze position of control force
Z4 position of sensor
8(z—L) delta function
& bending strain
GJ . .
Y=E also, torsional strain
VoL
- nondimensional follower force
T°L . .
b="TFr nondimensional follower moment
2
A= V;.th nondimensional control force
¢ torsional twist
& torsion natural mode
p=r/L
Pc=7 c/ L

T body torque
w frequency
Q nondimensional frequency

perturbation

Subscript

F flutter
D divergence

1. INTRODUCTION

This paper presents the results of an experimental and theoretical study of a means of
controlling an elastic body subject to a nonconservative force. The problem was first stated
in[1]. An interim note on subsequent experimental tests was published in[2]. The research
was also presented in a summary form at the XIIIth International Congress of Theoretical
and Applied Mechanics in Moscow, USSR, 1972. The experiment consists of a thin
cantilevered beam with an air nozzle mounted at its tip parallel to the chord line (Fig. 1).
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Fig. 1. Schematic of system.

Not only does the experimental model resemble a thin wing with tip jet, but it also experiences
a converging frequency flutter instability similar to classical bending-torsion wing flutter.
This similarity, along with the simplicity of the experiment, compared even with a wind tunnel
flutter experiment, gives it a potential use as a test bed for investigating the effect of feed-
back control in suppressing flutter of larger, more complex systems.

Furthermore, the flexibility of the experimental set-up permits a wide range of feedback
control configurations. The possibility exists, therefore, of experimentally verifying theo-
retical results obtained with the aid of linear feedback control, parameter optimization,
and optimal feedback control theory.

The experiment, itself, is taken from the group of applied mechanics problems known as
nonconservative force problems. In this regard, the study is believed to be unique for at
least two reasons. First, it presents one of the first quantitative observations of this type of
flutter instability in a continuous elastic system. Follower jet experiments have also been
reported in[3]. Second, while previous studies have been concerned with the reduction of
resonances of a system[4,5], the purpose of this study was to attempt to suppress or delay
the start of an instability in a nonconservative mechanical system using feedback control.

A wide range of subjects are clearly involved in the formulation, analysis, and application
of the results of this study. The second section of the first chapter of[6] surveys the major
papers or books in the following areas: active flight control, flutter suppression, linear
feedback control, adaptive control, parameter optimization theory, optimal feedback
control theory applied to distributed and discrete parameter systems, aeroelastic optimiz-
ation, and nonconservative force problems.

Briefly, motivation for this research was found in the growing number of applications of
feedback control techniques to aeroelastic systems (e.g.[13,14]). Most of the studies have
been directed towards a particular aerospace vehicle—the B-52[7], XB70[8], SST[9],
Space Shuttle [10], and Saturn V[11] to name a few. Whether the studies were theoretical
or experimental (using scale models or the real vehicle in flight test), problems arose in
attempting to understand the basic effect of control on the body due to the many degrees of
freedom involved. When a degree of control was achieved experimentally on a particular
vehicle, it was not immediately obvious how to use that knowledge on a different vehicle.

Up to the present, most of the effort has been directed toward gust alleviation and in-
creased fatigue life. Suppression or alleviation of flutter instability has been approached
throughincreasing the damping of the critical modes (even if the problem is one of converging
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frequency flutter). Theoretical models also suffer from the problem of size and complexity
if any resemblance to the vehicle is to be maintained. If the theoretical model has been
sufficiently simplified to apply analytical techniques, the problem becomes one of translating
their general control requirements into specific demands.

On the other hand, simple experimental or theoretical models have often suffered from an
inability to apply their results directly to full scale systems. However, Bolotin[12] and others
have analyzed simple mechanical systems with nonconservative forces. Such systems poten-
tially undergo dynamic instabilities like flutter, in addition to a static instability divergence.
Furthermore, techniques of control theory can be applied to these systems in a straight
forward and systematic manner with the effects on stability clearly seen (see e.g.[6,15]).
Such considerations led to the present study.

In the second part of this paper the equations for a thin beam under initial stress are
developed. The resulting system of partial differential equations is reduced to modal
equations by Galerkin’s method whose stability is assessed using root locus techniques.
In the last section of that part control forces are added to the model.

The third part opens with a summary of the experimental objectives. This is followed by a
description of the capabilities of the experimental apparatus and presentation of the results
of the experiment. For the purposes of this study, the most important result is the system
stability boundary which demonstrates the effectiveness of the control system. An increase of
force required to flutter the beam of over 65 per cent is recorded. However the variation
of the modal frequencies with follower force and control force are of value, as well. Sub-
critical, i.e. below flutter, experimental frequency variation data is seldom available in the
literature. This experimental data, therefore, by itself, presents a fine opportunity for experi-
mental-theoretical correlation.

This experimental-theoretical correlation is made in the fourth part after a discussion of
the theoretical computer model. This model is based on the equations developed in the
second part and corrected with experimentally obtained natural mode data. A five mode
Galerkin model is seen to adequately predict the controlled and uncontrolied beam behavior.
An explanation of the effectiveness of the various control configurations using the concepts
of linear feedback control theory has also been formulated[6]. Appendix D of[6] elaborates
on the reason for using linear control theory instead of optimal control theory in this
analysis and the interested reader is referred to that source.

2. THEORETICAL FORMULATION OF THE PROBLEM

2.1 Equation of motion for a thin beam

The equations for a cantilevered thin beam are derived in[l] and [6]. Figure 2 displays
the coordinate system used in this analysis. The undeformed body axes are x, y, and z
while the deformed variables are x’, ', and z’. The equations are written for a symmetric
cross section, rigid in the y direction. The displacement of the neutral axis in the x direction
is denoted by u while the angle of twist of the y axis about the z axis is ¢. The angles ¢
and du/dz are considered to be small, where du/0z is the local rotation of the z axis (about
the y axis).

The resultant shear force and moment on a cross section will be denoted by V and M,
respectively. The body force per unit length of beam is called ¢ and the body torque is .

It is further assumed that in the undeformed state there exists an initial load V°® and M°,
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Fig. 2. Coordinate system.

Taking a small perturbation from equilibrium, one obtains three perturbation and three
equilibrium equations:

0 0 0 0 (Ou_.
2P =5 @+ 5 (272 ) +4.=0
a(M)+ (¢M°)+V—¢V°+f_o 6))
0 d (ou ou
M, ( M? ) — V) +%,=0
Mg G )t th
2(V")+q°=0 -a—(V°)+q°=0 i(M")—V"+1-°-—-0 (2)
oz 7 y oz ¢ § oz - yooox
The constitutive laws as derived for a rectangular cross section, neglecting warping, are
u
M, = El— &)
0
M, = GJa—d’. (4)
The inertial forces are (neglecting rotational inertia about the y axis):
o%u
= —m-—:
b i &)
2
1,= —mr? Q
z atz

2.2 Addition of follower force
The follower forces are constant with respect to the body fixed coordinates x', y', z

1JSS Vol. i0 No.3 F
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If q is written
q= Qx’ €y + Qy’ey' + Qz’ez‘ (6)

=q.e.+q,e, +q,e,
then

Ou
= Q.l" - ¢Qy + g 0,

qy = Qy’ + d)Qx’
du
- Qz’ - E Qx' .
In particular, let
q=0,%e, and T=0. )]
Therefore the perturbed, 4, and the equilibrium, ¢°, values become
‘?x = - ¢'Qg‘ qg =0
4,=0 and gy =0 (8)
4.=0 4: =0 .
Substituting (8), (3), (4) and (5) into (1), one may write
o? 0*u o2 0 0 o Ou d%u dt,
= o4 _—|ve i
(Elazz) 577 PMz ) — = ( 5 ) tm—g +0y ¢=4, 2.
3 o o ou du 3¢ ©)
_ i T ] VO - 27 r_ _
oz (GJ 62) oz (M 62) Y oz e T2
and
oM? Vo — 0o
0z v
6V°
= (10)
ave -0
oz
Further simplification gives (Ef, GJ also assumed constant):
*u o*u 0 09 0 %9
— 11
mog Bl + 2V 4+ My 55 = 4, (11a)
aqu 3%
mr2 @tl Ja—’ MxF“‘T (11b)
and
oMo
x_po_
oz y =0
yo=o0. (12)
vy —0

oz
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Boundary conditions for this case are
M,=M,=V,=V,=0 at z=L
the first two of which give (from (3) and (4))

Pu 8¢
—=a=0 = i
0z} oz z=L (13a)

and the third from (1b) and (3)
0 0 0%u
— 0 —_——— 0 _— —— =
V.=V, > (PM3) % (EI 622) 0

or using (10a)

*u 0 00
—EI@—MJ""}'Z—— z=1L, (13b)
Condition (13b) can be simplified using (13a) to
63
pr 0.
Conditions at the clamped end are
)
u=2_$p=0 z=0. (14)
0z

2.3 Addition of follower moment
Follower moments may also be applied to the beam. Analysis of this problem is given in[6].

2.4 Reduction to modal equations

Using Galerkin’s method, we will reduce to ordinary differential equations the partial
differential equations (11).

We call u,, and ¢, the natural modes in bending and torsion of a clamped-free beam and
assume

U=y Ant,(2)

¢ = 2 B, ¢.(2).

The functions u,, and ¢, satisfy the boundary conditions (13) and (14) as well as the following
differential equations (non-dimensionalized with * =8/d(z/L) in which G,, and F, are known
constants

(15)

u’ — Gutu, =0

16
"+ F2¢,=0. (16)
In addition, the following orthogonality conditions are met:
L
f Uy, dz =6,
’ (7

(86,4 =14 0,
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The following equations are obtained after substituting (15) into (11), observing (16),
multiplying (11a) by u, and (11b) by ¢,, and finally integrating over z.

024, . dz Lo, dz
(m +EIG,,A,,)fu T+ ZB j Ve ¢,u,,f

or?
LZZBfM° ru— qu (18)
L a0 £yt

Equations (18) are valid for an arbitrary distribution of follower forces. We now specialize
to the case investigated in the rest of this study. In the case of a jet of air located at the tip to
provide the follower force,

Q) =V°é(z—L). (19)
Thus from (10)
VyO = VO
M2 =V%z-L). (20)

Substituting these equations into (18) and non-dimensionalizing (see Nomenclature),
one obtains:

d?a, 5 L L dz
A == s
(d 4+ K2 )c1,,,,+ ZB,CS,,, o foqxu,, . o
1
@B, 2 A 1 2L dz
(T'l-ﬂ )C2ss+;)—2-;amc9sm-;)—z-ﬁ OTZ(]SSZ

2.5 Specification of control force

We specify the control force Q, to be proportional-to the bending and/or torsion strain
at some point z; = z,. It is applied at location z; =z, and y; =r.; = Lp,. If V, is the
transfer function of the feedback loop, then

Qi = V(4e(z,) + By(z,). (22)

where 4 and B can be +1 or 0 indicating that bending and torsion strain is or is not
being sensed, and where

h
’z) =7 9

i (23)

£(z) = 7 1),
Equation (23) assumes the use of two additive strain gages. With the above definitions,
22 Q:(z —z)

= =21, 0:0(z — ). 24
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The right-hand side of equations (21) can now be written in non-dimensional form as

Pt d
e T = DB £(8,91 ) + 4 T ani) 25

r oo dz A, , .,
e b T = T 8edpa 3 (BT B0 ) + A T anuller).

The feedback loop is specialized to the case of one sensor and one control force application
point. The feedback loop transfer function is considered to be a pure gain and to represent
force applied by the control force per unit strain detected by the sensor.

Equation (21) is now a system of ordinary differential equations for 4,(=La,) and B,,
the coefficients of the natural modes defined in (15).

3. EXPERIMENTAL STUDIES

3.1 Experimental objectives

An extensive experimental program was initiated to verify the results of the theoretical
analysis and to demonstrate on an actual elastic body the techniques of control proposed
in this paper.

The specific configuration studied is a vertical, cantilevered, thin aluminum beam with an
air jet mounted at its free end parallel to its width (see Fig. 1). The follower force is then
proportional to the square of the jet velocity. The feedback loop sensors are strain gages
mounted on the beam. The control forces are provided by wire coils mounted on the beam
which, when supplied with a current proportional to the output of the strain gages, create
a magnetic field that interacts with the field of externally supported permanent magnets.

As stated above,[1] reported quantitative results of the experimental suppression of an
instability with feedback. It was a conclusion of that paper that ‘ the flutter instability of a
beam under a transverse follower force (without feedback control) is well understood on
experimental and physical grounds”.

However, the omission of a term in the nondimensional form of the control equation
presented in[1] (due to an algebraic error) resulted in the prediction of an incorrect stability
boundary. This also promoted a pessimistic view of the value of pure gain compensation
in the feedback loop and hence the recommendation to introduce dynamics into the feedback
loop.

The addition of this missing term to the analysis indicated that substantial suppression of
flutter could be acieved using only gain compensation. Since the main objective is to demon-
strate the feasibility of suppressing dynamic instabilities, the feedback loop has been kept as
simple as possible, leaving other forms of compensation to future research.

As in most experimental studies, there was a great deal of interaction between the experi-
ment and the developing theoretical model. In particular, the theoretical model needed
three types of experimental data as inputs or as checks on its predictions: natural frequencies
of beam vibration, variation of these frequencies with follower force, and the shape of the
natural modes. This data is discussed and presented in sections 3.4.2-3.4.4 of[6].

The most important experimental result is the stability boundary. The improvement in this
boundary through feedback control, the single most significant result of this research, is
discussed in section 3.4.
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Fig. 3. General view of equipment.

3.2 Test facility

The experimental apparatus (Fig. 3) was built over a steel plate welded to a pair of U
channels. 1/2 in. aluminum angle provides vertical and lateral support. Up to 3 in. of the
beam specimen is held clamped between 1/2 in. aluminum plates (Fig. 4). The magnets are
mounted in phenolic blocks (see Fig. 5) which clamp around 3/8 in. steel ready rod. The rods
are held at both ends by plates of aluminum which are free to travel back and forth in tracks.
The bottom track mounted on a phenolic base employs threaded rods for accurate lateral
placement. Once in place, the rods are quickly fixed with the aid of cap screws in both the
top and bottom supports.

In order to eliminate as much of the initial beam deformation as possible, care was taken
to select and prepare as flat a specimen as possible. Table 1 notes the dimensions of the
beam. After some experimenting, it was decided to attach the plastic tubing to the sides of the
beam with a continuous strip or tape (see Fig. 4). This procedure seemed to eliminate much
of the distortion in the tubing. Both bending and torsion sets of strain gages are semi-
conductor.

Finally, a method was devised to easily relocate the control force. As seen in Fig. 5 the
coils are mounted on plastic bases with holes in the center. At every 2 in. along the beam
length (or 10 per cent of the total length) a pair of holes have been drilled to allow passage
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Table 1. Beam specifications

Material Aluminum
Length L 20 in.
Width b 3 in.
Thickness A 0.02 in.
Beam mass (mpL) 53-0 gm
Tubing mass (my L) 532 gm
Nozzle mass My 57-0 gm
Coil mass (4 coils) M, 14-0 gm

of a machined nylon screw from one coil base to the tapped hole of the base on the oppo-
site side of the beam.

This entire test rig was placed on a large wooden table and leveled by means of a screw
in each corner of the base.

A Schraum air compressor is the basic air supply. The combination of many valves along
with an extended air supply line results in a somewhat unsteady flow. It is particularly
difficult to determine accurate modal frequencies near flutter. A possible solution is the
installation of a settling chamber.

The test rig can accommodate beams much longer and wider than the one described in
Table 1. However, even this particular beam allows a variety of interesting experiments.
Two pairs of strain gages permit torsion or bending or some combination of signal to be
sensed. The quality of this signal or signals is such that a small analog computer can be used
in the feedback loop to provide other than gain compensation. Finally, two pairs of coils
at each body station permits a force to be applied at either side of the y* = 0 axis as well as a
pure bending force or a pure couple. These control forces or moments can be applied at
several stations to represent a distributed control.

3.3 Preliminary experimental results

Calibration. The method of calibration of the follower force in terms of the air pressure is
given in[6]. As shown there, the force exerted by the jet on the beam is increasingly nonlinear
with respect to increasing pressure in the feed lines. This makes the accurate determination of
frequency variation with jet force difficult to obtain near flutter.

The calibration of the feedback force is also described in[6]. The specific feedback loop
used in this study employs only the torsion strain gages as sensors. The voltage directly
proportional to the torsion strain is amplified by signal and power amplifiers. The amplifiers
exhibit a flat, linear response over the frequency range of 0-100 cps. The amplified signal is
fed to one pair of coils on the beam. The force exerted on the wire coil by the radial field of
the permanent, stationary magnet is proportional to the cross product of the current though
the coil and the magnetic field. Since the magnetic field is constant, the feedback force is
linearly proportional to the current. (The magnetic field also exerts a moment on the coil
which is considered in this analysis to be of second importance.) Two pairs of coils are
always used at a station for symmetry. Either pair may be used in a given experiment.
This form of control results in both a bending deflection and a twist. Both positive and
negative values of the gain are available. Finally, the location of the control input station
may be varied over the range 0’1 < z /L <0'95.

Natural Frequencies. Considerable effort was expended in measuring beam natural
frequencies, i.e. with no jet force. The effects of tubing mass, nozzle mass, etc. as well as the
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Fig. 6. Follower force vs control force (stability boundary).

effect of control force were studied. For the sake of brevity, the reader is referred to[6] for
these interesting results.

3.4 Stability boundaries

The nondimensional jet and control forces 4 and A, have been previously defined. A
stability boundary for the system can be obtained by noting the first unstable values of 4
(Ap) for each A, available. It is with the aid of A vs A, stability curves that the merit of a
control system configuration can be determined. Figure 6, is a survey of the stability bound-
aries for all control input stations along the beam. The system is stable for values of A and 4,
below the curves. Since all stations experience flutter at approximately the same follower
force A for A, =0, on Fig. 6 each station is separated along the vertical axis.

These curves are positive p., which means that the pair of coils at y* > 0 were used. For
this sign of p,., positive 2, is the stabilizing sign of the feedback for all stations. Negative 1,
results in flutter for 2 below that obtained for 2, = O for all stations.

Looking first at the extreme stations, one observes that the control has almost no effect
at z./L = 0-1. This is reasonable since the displacements of the modes are very small at this
point. The modal displacements are the greatest at the tip but it is clear that flutter is not
suppressed the most there. The maximum value of A was obtained at z./L = 0-3.-0.5.

At z,/L =09 one also observes that the curve is composed of two types of instabilities
(Fig. 7). From negative 4. through A, = 3, the curve represents the stability boundary for
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Fig. 7. Follower force vs control force (stability boundary).

converging frequency flutter. Beyond 4. = 3 another type of instability takes over. Physically,
at this point it is impossible to hold the beam centered between the externally supported
permanent magnets. It seems as if the first bending mode is diverging.

This divergence-like phenomena takes place at higher X and 4, as the coils are moved up
the beam. Between z,/L = 0-9 and 0-6 it seems, therefore, that the maximum value of A
obtainable is a function of 4, and z/L. However, between z /L = 0-5 and 0-3, a divergence
occurs at a constant jet force, A = 12-5. This instability does not seem to be a very strong
function of the control system. This is seen more clearly on Fig. 8 discussed later.

In order to determine more accurately the nature of the stability boundaries, two stations
were selected for more detailed study. z./L = 0-9 was chosen because it represents the best

UNSTABLE

68% INCREASE IN A\t

K¢=2.8-3.0

UNSTABLE

0 1 1
-2 o} 2 4 6 8 10 12 14 16

Fig. 8. Follower force vs control force (stability boundary).
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intuitive choice for control placement. z,/L = 0-3 was chosen because at this station the
greatest stable variation of A, at high A was recorded.

Figure 7 presents the A vs A, curve for z,/L = 0-9. All combinations of 1 and A, under the
curve are stable conditions. The two previously described parts of the stability curve are
now clearly defined. The converging frequency flutter instability (whose frequency K, = 3-0)
changes at A, = 3 to a bending divergence (K, = 0) with steep negative slope. At the peak,
however, the force needed to flutter the beam is increased by 26 per cent over the uncontrolled
case.

Figure 8, representing the stability curve at z,/L = 0-3, show a more involved boundary
than occurred at z,/L = 0-9. Combinations of A and A, within the curve are stable configura-
tions. This boundary now has three clearly defined regions. The portion between low negative
values of A, and A, =7 consists of the converging frequency flutter instability The region
between A, = 7 and 17 represents a bending divergence (zero frequency) of a different nature
than observed in the z./L = 0-9 case. The main difference is the far more moderate slope.
The final region of the boundary consists of a torsional oscillation of higher frequency than
the above flutter.

In summary, the two stability curves for z /L = 0-9 and 0-3 are representative of the curves
for the stations in the two regions divided by z,/L = 0-5. As one raises the control station
from z,/L = 0-9 one can see that the maximum point of the boundary increases in both the 4
and A, directions. At approximately z,/L = 0-5 a ““lid ”” seems to be placed on the rise of the
boundary. This creates a relatively flat portion of the boundary until the third region inter-
sects the main curve. Beyond z./L = 0-3, the boundary flattens out indicating little stability
increase with control. The maximum increase in flutter force of 67 per cent was recorded
at stations z,/L = 0-3-0-5.

4. CORRELATION OF THEORY AND EXPERIMENT

Part 2 develops the equations of motion for a thin cantilevered beam with follower force.
The use of Galerkin’s method reduces the coupled, nonconstant coefficient, partial differ-
entialequations(11a, b)toequations(21) and (25) which represent a system of linear, coupled,
constant coefficient differential equations in the coefficients a; and B; of the Galerkin modes.
The particular Galerkin modes used are the natural bending and torsion modes of a canti-
levered beam. These modes are the exact solution to equations (11a, b) when there is no
follower force and no control force. The effect of the follower force was experimentally
observed to couple together these natural modes so that each beam mode at a non-zero
follower force appears to be a sum of the natural modes. Analysis of the system of equations
(21) and (25) will demonstrate this, as well. This system represents a set of linear, homogeneous.
ordinary differential equations which can be reduced to linear algebraic equations by a
Laplace transformation with respect to time. Solving the characteristic equation of this set
of linear algebraicequations produces a set of roots or eigenvalues which can be interpreted as
frequencies of the beam modes of vibration. Each eigenvalue can then be substituted back
into the characteristic determinant to find the associated eigenvector. These eigenvectors
can be interpreted as the relative weights of each natural mode in the particular beam
motion at any given operating condition, i.e. combination of follower and control forces.
The number of assumed natural modes necessary to adequately represent the real beam
is discussed in 4.1.

The nature of the physical problemi can be most easily visualized with the use of three
natural modes: first and second bending and first torsion. The characteristic equation for
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IB-First bending
2B-Second bending
{T-First torsion

28

Imag.

Real

Fig. 9. Root locus schematic.

this system is a polynominal of sixth order in the Laplace transform variable s. When the
control force A, is zero, the nondimensional follower force A appears in this equation linearly
in 22. The characteristic equation can therefore be placed in the standard root locus form
with A2 as the gain and Q(s) and P(s) polynominals in s:

2 PO) _
0]

One can then observe the effect on the eigenvalues of the follower force by constructing the
root locus. The locus starts at the system poles, denoted by x in Fig. 9 and found by setting
Q(s) = 0. These poles are the frequencies of the natural modes. It is observed that the follower
force couples the natural modes and changes the modal frequencies as shown in Fig. 9 (for
zero control force). The frequencies of the first two modes are driven together. At the point
of coalescence one root acquires a positive real part and the other acquires a negative real
part. The positive real part indicates a flutter instability. The object of the control is to delay
the convergence of these roots and so to increase the follower force needed to flutter the
beam.

144 0.

4.1 Computer model

The computer programs used in the research are described in[6]. Comparison of results
using different numbers of modes over a variety of beam configurations dictated the use of
five modes in the final analysis. The modes are the first three bending and first two torsion
modes.

The equations for the beam were written for uniform mass and stiffness. The presence of
the added masses due to the coils, tubing and nozzle required correction of the modal
integrals and resulted in 2 non-diagonal mass matrix for certain configurations. Non-ideal
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stiffness characteristics were also taken into account by using experimentally determined
modal frequencies.

In addition to corrections for nonuniform mass distribution, other corrections could be
made for the presence of structural damping, gravity, the ‘“ garden hose effect,” and the
oscillation due to fluctuations in the air delivery line. Discussion of these latter effects is
presented in[6].

4.2 Theoretical results and correlation with experimental data

In this section theoretical results are compared with the experimental observations of
part 3. The close agreement between the model predictions and actual observations increases
our confidence in our ability to undetstand the manner in which the application of control
affects the system stability boundary.

4.2.1 Frequency Variation with Follower and Control Force. Figures 10 and 11 show the
predicted and observed variation of frequency with follower force z, /L =0-9 and 0-3.
Experimental-theoretical correlation is generally good except when 1> 7. The worst
correlation is at the onset of flutter where the observed flutter frequency is measurably
lower than the predicted value.

4.2.2 Mode Shapes. Figure 12 is a theoretical check on the observed node lines of the
beam. The node lines were calculated using the roots of the system characteristic equation
for each A. Each root, when substituted back into the characteristic equation, produced an
eigenvector. The components of this eigenvector were then multiplied by the amplitude
at each longitudinal station of each of the first three independent modes. This produced a
bending deflection and twist at each longitudinal station for this particular mode, and the
node lines indentified (see Fig. 12).
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The predicted node lines are very close to the observed ones. The portion of the node
lines at small z/L were hard to observe due to the small beam deflections in this region.

4.2.3  Stability Boundaries. Figures 13 and 14 show the experimentally and theoretically
derived stability boundaries for z./L = 0-9 and 0-3, respectively. The experimental error is
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Fig. 12. Beam node lines A, = 0.
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different for each region of the stability boundary. The upper region is found by raising 4
for a given 4.. This gives an accuracy of A1l = +0-4 (or a feedline pressure of +0-5 psi).
The lower region of the curve is found by increasing A, for a fixed value of A. This gives an
accuracy of 4, = +0-5.

The theoretical-experimental correlation at the two representative control input stations is
quite good. As seen in Fig. 13, the model predicts the correct nature of the stability boundary
as a function of 1, for z,/L = 0-9. The model shows quite clearly what happens along the
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Fig. 14. Follower force vs control force (stability boundary).



380 CHARLES F, KaLMBACH, EARL H. DoweLL and Francis C. MooN

divergence portion of the boundary. For any A, > 0 the effect of A is to first decrease and
then increase the frequency of the first beam mode. As A. increases, the minimum frequency
reached by the first mode decreases. Finally at A, =3, the first beam mode frequency
reaches the real axis and divergence occurs. Increasing /. beyond this point decreases the jet
force necessary to force the first mode to diverge.

Figure 14 shows that excellent predicted—observed agreement exists in the low frequency
flutter boundary for z./L = 0-3. The correlation is not as good along the higher frequency
flutter region, but the experimental error is greater in this area. Also correlation is not good
along the divergence boundary in Fig. 14.

5. CONCLUSIONS

The main objective of this study has been accomplished. The control of a particular
dynamic instability of an elastic body has been demonstrated. Suppression of the converging
frequency flutter for an increase of follower force of over 65 per cent has been recorded with
a relatively simple feedback system. The simplicity of the feedback loop increases the pos-
sibility of extending this work to larger systems, in particular flexible aerodynamic surfaces.

Furthermore, the behavior of the beam subjected to a follower force with and without
control has been accurately modelled with a finite mode Galerkin approach. The coupling
effect of the follower force has been observed and an approach to understanding the effect
of feedback control has been proposed[6]. This approach seeks to understand the control
of the beam modes by recognizing them to be the coupled sums of the normal bending and
torsion modes. This is important when not only increased stability at a specific operating
point but also the maximum increase of the stable region is desired.

As discussed in[6], methods of optimal feedback control are not readily applicable to this
type of problem, particularly when experimental-theoretical correlation is desired. However,
the important role of parameter optimization methods during the theoretical formulation of
a problem has been documented once again.

The experimental set up is satisfactory and versatile. The similarity between the flutter
exhibited by the beam with transverse follower force and the classic torsion-bending
flutter of an aircraft wing gives this experiment good potential as a test bed for techniques of
flutter control. However, the experimental demonstration of suppression of a dynamic
instability in an elastic body is of interest, by itself.
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AécTpakt — [Ipenmonaraercsi TEOPETHYECKOE M OIKCICPUMEHTAILHOE MCCIIENOBAaHHE, C
LENBIO ONpPEeAeEeHNsi BO3BMOXHOCTH PETryIMPOBaHHA TOHKOM, KOHCOMBHOM Ganky, moaBepKeH-
HOW HEeWCTBHIO HEKOHCEPBATHBHOM, clensireli cuibl. OnpenenseTcad TeopeTHdyecKkas MOIETb
IyTEM NPHMEHEHHs] ypaBHCHHH TOHKOH Oajyk¥, HOX BNHSHHEM HAYaJbHBIX HAINPSDKCHWH H
merona I'anepkuHa. CTPOUTCA IKCIIEPHMEHT, KOTOPBIH OaeT BO3MOXHOCTh IPHMEHHTh Pa3Ho-
obpasue nerieit 0OpaTHOM CBSI3H, C LEIBIO PETYIHPOBKM TOHKOM aJIIOMHHHEBOH OasIkm, ¢
KOHIIEBOM CTpye#l NpHKpemIeHHOH mapauienibHo K xopze. M3bupaeTcs yacTHas CHCTEMa
PEryNHAPOBAHMA MJIS MCCIENOBAHMA SBNCHMA. PEeTMCTPHPYETCS TPHPOCT CIEAAINEH CHITBI,
HeoOxoaumoit A pectabumm3aivu Oanku, Beime 65 5. TeopeTHYeCKHe pe3ysIbTaThl YKa3bl-
BAIOT HaJJIeXAIUee COrNIaCOBAHUE C ONPEAETIEHHEIMH SKCIIEPUMEHTAIBHO MPEAEIaMH YCTORYM-
BOCTH M M3MEHEHHAMM YaCTOTHI, B 3aBHCHMOCTH OT CIICHSAINEH CHIIBL.



